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ABSTRACT

The ability to quantitatively describe ionization phenomena is essential to designing
medicines, developing novel materials, and modeling the time-evolution of many relevant
liquid-phase chemical systems. In liquid phase chemistry, acid-base phenomena result in
the formation of solvated ions. Biochemical reactions, synthesis steps, and pharmacological
mechanisms-of-action also often involve charged reactants and products.

A key property is the “elusive” solvation free energy of the ion, which itself is not directly
measurable but for many relevant ions is tied to other observable properties such as the
acid dissociation constant (pKa). However, modeling approaches tend to perform poorly
for predicting solvation free energies of ionic solutes. Existing solvation models often have
average errors exceeding 3 kcal mol-1. Literature data are also scarce, precluding the pa-
rameterization of physics-based solvation models, development of data-driven methods, and
benchmarking of such techniques for ionic solutes.

The work in this thesis seeks to address these issues of data scarcity and modeling. The
work can be divided into three components:

• Acid-base phenomena. First, the data curation aspects of pKa are discussed. Exist-
ing inconsistencies in data usage and terminology have confused the literature, and are
clarified herein. Curated datasets for aqueous and non-aqueous pKa values, based on
IUPAC collections of data, are also presented here. However, even with these datasets,
many solvent systems still do not have much data (several, for instance, have less than
100 datapoints). To address this data scarcity issue, a method for generating high-
quality pKa predictions in non-aqueous solvents is presented and benchmarked, and
then utilized to create “synthetic” data for roughly 3,000 acids in 29 solvents (a total
of nearly 80,000 data points).

• Thermodynamics of ionic solutes. As aforementioned, pKa, along with other mea-
surable thermodynamic properties, can be linked back to the ions’ solvation energies.
This section describes how this thermodynamic relationship is used to generate a new
database of hydration free energies for ions, which can then be used to develop simple
corrections to existing solvation models to reduce error by roughly 60%. This method
is expanded to a large scale, used to generate nearly 6,000 values across 8 solvents.
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For comparison, prior to these efforts, the largest such database included only 300
datapoints. Finally, a machine learning model was trained to predict solvation free
energies (as well as the substituent properties), the first machine learning model to our
knowledge that can predict anionic solvation energies and gas-phase acidities.

• Kinetics. The methods of the previous chapters are expanded to reactions involving
zwitterions, radicals, and singly-charged anions (SN2 reactions). The H-abstraction
reaction is examined through a dataset of approximately 100 million solvation free
energies previously computed in our group. The dataset consists mostly of uncharged
closed-shell and open-shell solutes, but contains some zwitterions as well. The error of
the calculation method is examined, with a focus on the barrier heights of the reactions.
The conformational effects of the zwitterions are examined, showing the surprisingly
high sensitivity of the solvation energies to the optimized geometries of such solutes.
Next, SN2 reactions are examined. A dataset of SN2 rate data was digitized and pro-
vided, and used to benchmark a quantum-chemical approach to prediction relative rate
coefficients. The method shows good predictive quality, demonstrating the usefulness
of solvation models for relative properties despite their very high errors for absolute
energies.

In sum, these efforts combine cheminformatics, quantum chemistry, data science, and
machine learning to enable quicker and more accurate prediction of properties related to
acid-base and ionization phenomena.
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