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ABSTRACT

The grand challenges in medicine, energy, and materials science are fundamentally
molecular discovery problems. However, the vastness of chemical space renders traditional
experimental exploration inefficient and insufficient. Autonomous Molecular Discovery
promises to accelerate this process by integrating artificial intelligence (AI), computation,
and automation in chemistry, but it faces a critical trilemma: balancing accuracy, speed, and
scalability. This thesis documents a systematic effort to alleviate this tension by developing
and integrating novel computational frameworks that synergize the first-principles rigor of
quantum mechanics (QM) with the predictive efficiency of machine learning (ML) and the
scalable automation enabled by Al

This thesis began by focusing on developing the first ab initio kinetic models for the
liquid-phase oxidative degradation of Active Pharmaceutical Ingredients. This demonstrates
the feasibility and predictive power of automated mechanistic modeling in complex chemical
environments, and highlights the acute need for more accurate thermochemical and kinetic
data to handle real-world complexity. To address this, we developed a framework for computing
systematic thermochemical corrections, and conducted an extensive benchmark of 284 model
chemistries, establishing protocols to efficiently achieve chemical accuracy (~1 kcal/mol)
from QM simulations. Recognizing the limitations of speed and data scarcity, we engineered
physics-informed ML architectures, notably the QM-GNN, which fuses Graph Neural Networks
(GNN) with QM descriptors. This approach significantly improves predictive performance
and data efficiency, particularly for reaction regioselectivity in low-data regimes. Finally, to
deploy these advances at scale, we designed QuantumPioneer, an automated, high-throughput
platform for generating large-scale, high-fidelity QM thermo-kinetic datasets. This platform
has produced an extensive database for oxidation reactions, enabling the development of
novel ML models for predicting molecular stability and solvation energies. Collectively, this
thesis provides a cohesive framework for accelerating molecular discovery, demonstrating
that the strategic integration of first-principles simulation and data-driven intelligence can
overcome key bottlenecks hindering autonomous chemical design and discovery.
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