Scalable 3D-Printed Synthetic Vasculature Platform for Oxygen and Nutrient Delivery in 3D Tissue Models

by

Srinivasa Rao Pujari

The absence of functional vasculature limits the viability, scalability, and physiological relevance of 3D tissue models. Stem cell-derived organoids serve as powerful platforms for modeling development, disease, and therapeutic response, but suffer from diffusion-limited transport that leads to necrotic core formation and restricted maturation. Existing approaches to improve transport, including spinning cultures, slicing, and endothelial co-culture, offer only partial solutions and often compromise tissue architecture or scalability. Engineered vascularization efforts have faced limitations in resolution, perfusion control, or mechanical robustness. To address these challenges, we developed a synthetic vasculature platform integrated with a perfusion system to enable continuous delivery of oxygen and nutrients.

First, we developed photocurable resin formulations for two-photon polymerization (2PP) to fabricate perfusable, porous, and mechanically robust vascular structures. For *in vitro* use, we optimized a PEGDA-PETA resin with a non-functional porogen to achieve cytocompatibility, tunable porosity, and high-resolution vascular features. For potential *in vivo* applications, we formulated a custom flexible monomer blend with enhanced elongation at break and burst pressure, yielding mechanical properties closer to native vasculature. Then, we engineered a modular, tissue-agnostic perfusion platform with tunable geometries, compatible with diverse tissue systems and differentiation protocols. We used computational modeling to guide perfusion parameters for sustained oxygen delivery during long-term culture. Finally, we validated the platform by integrating it with early-stage brain organoid differentiation, which reduced necrotic core formation, preserved ventricular-like architecture, and maintained populations of proliferative neural progenitors. Single-cell RNA sequencing and metabolomics revealed reduced cellular stress, increased mitochondrial activity, and a metabolic shift from glycolysis to oxidative phosphorylation.

These advances establish a scalable and adaptable approach for vascularizing 3D tissues. While this work focused on brain organoids, the system is compatible with various tissue models and may inform the development of immune-isolating or pre-vascularized constructs for regenerative medicine. By combining engineered materials, high-resolution 3D printing, and continuous perfusion, this platform addresses key transport limitations in 3D tissue cultures and provides a foundation for future translational applications.

Thesis supervisor: Kwanghun Chung

Title: Eugene McDermott Professor in the Brain Sciences and Human Behavior