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Small organic molecules possess an astronomical number of structural possibilities and a wide 
range of functionalities, holding immense potential to provide material-level solutions to critical 
societal challenges such as health and the environment. However, the discovery of molecules 
with functionalities tailored to specific applications remains a challenging, time-consuming, and 
resource-intensive process, often relying on trial-and-error experimentation. Recent advances in 
computational techniques—particularly in artificial intelligence—offer promising solutions to 
this inefficiency. These developments are paving the way toward a more systematic and efficient 
approach to molecular discovery, enabling the design of novel functional molecules tailored to 
specific needs and accelerating the development of solutions to urgent issues in health, 
sustainability, and energy. 

This thesis presents algorithmic advances in artificial intelligence, particularly deep learning, for 
de novo molecular discovery, framed as a black-box optimization problem with a focus on small 
organic molecules. The contributions span three core aspects: 

-​ The first section focuses on improving the sample efficiency of molecular optimization. 
A central capability of any molecular design algorithm is to determine which direction to 
explore next within chemical space in order to identify molecules with more optimal 
properties, given a limited set of known examples. Due to the inherent trade-off between 
computational efficiency and predictive accuracy in modeling methods, it is crucial to 
evaluate as few candidate molecules as possible to identify the optimal structure. This 
section introduces the problem formulation and benchmarking efforts for sample-efficient 
molecular optimization, followed by several approaches aimed at enhancing efficiency. 

-​ The second section addresses the challenge of ensuring synthetic accessibility during 
molecular design. For small organic molecules with non-trivial syntheses, any design that 
cannot be realized in the lab has limited practical value. This presents a unique constraint 
in small molecule design that often renders direct adoption of algorithms developed for 
language or vision tasks ineffective. After framing the problem, this section introduces a 
generative modeling framework that integrates synthesis and design, ensuring that the 
search is constrained to synthesizable chemical space. It further introduces the concept of 
“generative molecular projection” and demonstrates its application in balancing sample 
efficiency and synthetic feasibility. 

-​ The third section targets the improvement of oracle accuracy for molecular discovery. 
Achieving both accurate and efficient prediction of molecular properties has long been a 
central goal in computational chemistry. While deep learning has shown promise in 
breaking the traditional trade-off between accuracy and efficiency by leveraging 
large-scale historical data, its full potential—especially for directly learning 



experimentally measured bioactivities under data-scarce conditions—has yet to be 
realized. This section presents a benchmarking effort on applying deep learning to 
therapeutic-related property prediction, and introduces substrate scope contrastive 
learning as a strategy to learn reactivity-related patterns from published reaction datasets. 

Together, these three components present a systematic, data-driven methodology for small 
organic molecule discovery that minimizes the need for extensive domain expertise. The 
algorithms developed in this thesis are designed to support autonomous workflows, potentially 
enabling closed-loop molecular discovery that maximizes efficiency and reduces both cost and 
reliance on human intuition. While the demonstrations in this thesis primarily target 
pharmaceutical applications, the methods are task-agnostic and can be readily extended to 
broader material discovery efforts. 
 


