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Molecular representation learning has revolutionized computer-aided chemistry by enabling the 
automatic extraction of arbitrarily complex patterns from datasets of (potentially labeled) 
molecular structures via deep neural networks. In predictive chemistry, deep learning is 
increasingly being used to replace expensive physics-based simulations and even experimental 
measurements of chemical properties. In generative chemistry, deep generative models are 
powering molecular design and optimization campaigns across chemical industries, particularly 
drug discovery and functional materials design. Notably, this paradigm shift has been driven by 
the development of sophisticated representation learning algorithms over the past decade that 
encode and decode molecular structures with increasing geometric detail – from minimal 
SMILES strings to elaborate atomistic 3D structures. Yet, many aspects of molecular structure 
remain neglected by leading geometric representation learning models. Accordingly, this thesis 
advances the geometric representation learning of molecular structure to create new 
opportunities in chemical property prediction, structure elucidation, and molecular design. 
 
This thesis begins by highlighting surprising failure modes of graph neural networks when 
predicting properties dependent on chirality and conformational isomerism. A new 
stereochemistry-tailored model is then developed to imbue achiral graph neural networks with 
tetrahedral chiral expressivity while evading the pitfalls plaguing preceding 2D and 3D graph 
networks. This thesis then examines how the geometric quality of structures encoded by 3D 
networks impacts their accuracy in property prediction tasks requiring the model to reason about 
conformational flexibility. 
 
Neglecting certain structural characteristics of molecules that pose difficult or expensive to 
model is also common in computational chemistry. In nuclear magnetic resonance (NMR) 
prediction, for instance, quantum chemical calculations typically estimate magnetic shieldings 
from stationary gas-phase geometries – ignoring vibrational effects and explicit solvent. To 
advance NMR-based structure elucidation, this thesis next develops neural surrogates for 
magnetic shielding calculations that, when integrated with molecular dynamics simulations, 
provide access to unprecedented accuracy in solvent-sensitive NMR spectra prediction. 
 
Finally, this thesis advances de novo molecular design by explicitly representing 3D shapes, 
electrostatics, and non-covalent interactions in deep generative models for small molecules. A 
shape-conditioned variational autoencoder is first developed to enable the design of chemically 
diverse molecules that can adopt desired conformational shapes, like ligand binding poses. This 
strategy is then generalized into a powerful interaction-aware diffusion modeling framework to 
comprehensively enable bioisosteric replacement in ligand-based drug design. 
 
Overall, this thesis newly designs, applies, and critically analyzes multiple geometric 
representation learning algorithms to improve the machine learning modeling of molecular 
chirality, conformational flexibility, vibrational/solvent effects, shape, and intermolecular 
interactions. Although further advances in our ability to learn powerful and generalizable 



representations of all aspects of 3D molecular structure are still sorely needed, I expect that the 
tools and techniques developed in this thesis will both directly and indirectly contribute to 
innovative new approaches across computer-aided chemical design and discovery. 
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