Mathematics, Methods, and Models
for Data-Driven Rheology
by

Kyle R. Lennon

While data-driven tools and techniques have revolutionized much of the scientific
and engineering landscape, they have yet to make a substantial impact in the field
of rheology. Rheological data sets are at once too scarce and too diverse to enable
traditional machine learning approaches — their scarcity a reflection of the time- and
material-intensive nature of bulk rheometry, and their diversity a product of the many
rheometric protocols and tools used to characterize the hereditary behavior of complex
fluids. In this thesis, we explore methods and models that combine domain knowledge
curated over the nearly century-long history of rheology with modern advancements
in data science and machine learning, whose aim is to maximize the utility of the
available rheological data and rheometric tools. Essential to each of the methods and
models developed in this thesis is a solid mathematical foundation that elucidates
the unique nature of rheological data, without which the machine learning techniques
could not take firm hold. These Mathematics, Methods, and Models for Data-Driven
Rheology promise to advance the field of rheology, and the engineering of complex
fluid and soft solid systems, in several ways.

In the first part of this thesis, we derive a new mathematical construction for
asymptotic nonlinearities in simple shear flows, called Medium Amplitude Parallel
Superposition (MAPS) rheology. Based on a polynomial expansion of the general
time-invariant functional relationship between shear stress and strain (or strain rate)
in simple shear flows, MAPS reveals a common embedding for many previously discon-
nected data sets. This asymptotic framework enables direct comparisons of constitu-
tive model predictions with a variety of experimental data, and facilitates data-driven
studies throughout the remainder of this thesis.

In the second part of this thesis, we develop a novel data-rich experimental method
for weakly nonlinear rheology, which uses three superposed oscillatory tones to obtain
high-throughput measurements of a MAPS response function. We present applica-
tions of this technique to robust parameter identification within physically motivated
constitutive equations, and to data-driven monitoring of rheological transitions within
a vitrifying clay dispersion. We next derive an automated method for the analysis of
rheological data, based on the longstanding technique of superposing parametrically
self-similar data sets. We validate this statistically robust technique, which employs
machine learning to automate various types of data superposition tasks, on a broad
range of data drawn from the rheological literature.

In the final part of this thesis, we propose a general modeling framework that
encapsulates many well-known viscoelastic constitutive equations. This model for-
mulation incorporates an arbitrary tensor-valued function of the stress and rate-of-



deformation tensors into a “generalized nonlinear Maxwell model”. The medium am-
plitude behavior of this model reveals a data-driven framework for constitutive model
selection using MAPS rheology, which can accommodate both shear and normal stress
data as well as multiple relaxation modes. We then consider a machine learning sur-
rogate for the arbitrary tensor-valued function, and demonstrate that such a machine
learning approach can rapidly generate accurate and generalizable models from lim-
ited experimental data. By design, these models are highly extensible and directly
amenable to three-dimensional simulations of industrially relevant flows, and may
therefore facilitate the rapid design and engineering of processes involving complex
fluids.
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