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Predictive chemistry holds great promise in accelerating scientific discovery and innovation.

Only by understanding the key reactions and pathways present in a given chemical system can

scientists hope to manipulate them for the benefit of society. An approach towards predictive

chemistry involves decomposing systems into kinetic mechanisms consisting of elementary reac-

tions and quantitatively describing each of those reactions. Incredibly, the immense progress in

computational methods and compute power now allows the calculation of thermodynamic and ki-

netic parameters of elementary reactions at an accuracy necessary for predictive chemistry. Real

systems can consist of tens of thousands of elementary chemical reactions, so it is infeasible to

calculate these parameters by hand. Furthermore, general-purpose parameter estimators are not

yet accurate across diverse areas of chemical spaces, which necessitates the use of expensive and

labor-intensive computational methods to obtain them.

This thesis focuses on computing kinetic parameters by both automating and accelerating the

computational pipelines used to generate them, relying on modern machine learning frameworks—

specifically, message passing neural networks—to facilitate these calculations.

Noting that in the framework of automated kinetic parameter calculation, transition state search

is a primary bottleneck, this thesis first devises a method to generate transition state geometries

with deep learning. The new method achieves improvements in both accuracy and speed compared

to existing alternatives, demonstrating that high-throughput quantum chemistry pipelines can pro-

vide ripe data to develop machine learning algorithms to, in turn, accelerate these pipelines. This

thesis next investigates a fundamental limitation of message passing neural networks to capture

tetrahedral chirality and proposes several fixes to address this limitation.

While generating a single transition state structure is an important goal, accurate calculation

of kinetic parameters often requires investigating multiple conformations. Hence, this thesis builds

a generative framework to predict multiple low-energy conformations directly from the molecular

graph. The method is demonstrated for stable species conformer generation and outperforms

existing baselines in a number of benchmark studies. Integrating all the developed models together.

this thesis next develops an end-to-end pipeline to generate transition state conformers directly

from the atom-mapped reaction SMILES. The pipeline embeds both the transition state guess

method and the stable species conformer generation method from previous chapters. It further

develops a new method for transition state generation using equivariant graph networks and uses

semi-empirical quantum mechanics to quickly interrogate multiple transition state conformers.
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Although most of presented work investigates reactions in the gas phase, reactions in condensed

phase require additional solvation corrections. To facilitate calculation of these corrections, this

thesis constructs a large dataset of solution free energies across a range of solvents. It then develops

a model to predict relevant conformations of the solute for any given solute-solvent pair.

The tools developed in this thesis will become an integral part of modern computational chem-

istry pipelines. Undoubtedly, the future of automated predictive chemistry will heavily rely on

these and similar deep learning models for fast and accurate parameter estimation.
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