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Process development is one of the major hurdles that pharmaceutical companies face when 
bringing a new pharmaceutical compound to the market. Acceleration of process development 
minimizes costs and gets new compounds to the market sooner, which 1) gets medication to 
patients in need quickly and 2) maximizes revenue relative to a fixed patent expiration date. 
Incorporating automation into the process development workflow can accelerate the 
acquisition of high-quality data, which helps process development scientists and engineers 
develop safe and efficient processes rapidly. Automation may come in the form of software, 
such as experimental design algorithms, and hardware, such as platforms that prepare, run, and 
analyze reactions. 
 
The field of statistics offers a number of approaches to optimal experimental design that have 
formed the basis for so-called "quality-by-design" development strategies in the 
pharmaceutical industry. More recently, iterative, algorithmic optimization routines have been 
adapted for reaction optimization as well. However, these strategies are most appropriate for 
reaction domains that consist primarily of continuous reaction variables. New techniques are 
needed that enable optimization over discrete and continuous reaction variables - in other 
words, high-dimensional chemical space - simultaneously. Discrete reaction variables include 
factors like the catalyst, ligand, solvent, and other reagents that are used to effect a chemical 
transformation. Given a tensor capturing relevant information about each discrete reaction 
variable, machine learning is well-suited to use data to identify patterns and relationships 
between the various settings of each discrete variable to accurately model reaction outcomes 
and enable optimization. We used machine learning in combination with an experimental 
design routine from the field of statistics, known as uncertainty sampling, to demonstrate that 
machine learning can be used to minimize the number of experiments that need to be 
performed to obtain an accurate model of a high-dimensional reaction domain defined by 
multiple discrete reaction variables. 
 
On the hardware side, automated experimentation platforms have gained a foothold in process 
development organizations, but there remains a need for platforms that can reproduce the 
flexibility and accuracy of the bench chemist while achieving high throughput and using as little 
material as possible. Droplet microfluidics is attractive for reaction development because it 
uses small quantities of precious reaction material, and the high surface area to volume ratio 
enables efficient heat transfer and interphase mass transfer. We adapted an automated droplet 
reactor platform for high-fidelity, flexible, reproducible, high-throughput operation by 
upgrading the design and operating procedures, placing multiple reactor channels in parallel, 
and creating a scheduling algorithm that orchestrates all of the parallel hardware operations 
and ensures droplet integrity as well as overall efficiency. We designed and incorporated all of 
the necessary hardware and software to enable both thermal and photochemical reactions. We 
demonstrated both the single-channel and parallelized versions of the platform using a series of 



model thermal and photochemical reactions, and demonstrated how the parallelized platform 
allows for rapid acquisition of the data necessary to determine reaction kinetics. The platform is 
flexible in terms of use case: through the integration of a variety of experimental design 
algorithms, it can be used for either screening or optimization over a wide range of chemical 
domains, and a fraction collector can be appended to the end of the platform to capture 
reacted droplets and thereby enable library synthesis. 
 
The software and hardware developed in this thesis can together enable accelerated process 
development that minimizes delays between the discovery of transformative medicines and 
their delivery to patients in need. 


