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The rational design of materials with tightly controlled properties is crucial to ad-
dressing future challenges in energy, electronics and catalysis. While improvements
in computing power have made simulation with density functional theory (DFT) an
essential tool in screening new materials, it remains too costly to address explore
truly high-dimensional design spaces. This problem is especially acute for open-shell
transition metal (TM) complexes, which are of central importance in homogeneous
catalysis and have applications in molecular electronics, sensors and energy gener-
ation and storage. TM complexes consist of metal centers coordinated to a ligand
field, and manipulation of this ligand field can precisely tune the electronic proper-
ties of the metal. Unfortunately, the space of different metal-ligand combinations
is combinatorially-large and poorly characterized (relative to organic chemistry).
Further, DFT calculations for these systems are expensive and sensitive to method
choice, making it impractical to simulate large numbers of candidates indiscrimi-
nately. This makes the search for TM complexes with desired properties a formidable
challenge.
This thesis addresses these challenges by formulating algorithmic strategies for ma-
terials design that exploit insights from data-driven surrogate models together with
first-principles simulations. A framework for data-driven inference of the quantum
properties of TM complexes is developed, using artificial neural networks (ANNs)
to estimate the quantum mechanical properties of unseen TM complexes at similar
accuracy to the baseline uncertainty in DFT calculations, at negligible cost.
A new family of graph-based numerical representations for transition metal com-
plexes is developed that is capable of describing a full range of metal-local and
global features while retaining chemical interpretability. In addition to improving
predictive inference of trained surrogate models based on purely 2D information, the
interpretability of these features allows for extraction of chemical insight from the
thousands of DFT evaluations used for model training. Feature selection techniques
allow low-dimensional feature sets that show good performance for specific prediction
targets (e.g. spin state ordering or redox potential) to be identified, and analysis of
the metal-local to metal-distal character of these feature sets provides insights into
the relationship between ligand field and properties of the metal center. For exam-
ple, spin state ordering appears to be strongly controlled by the immediate ligand
environment (the first coordination shell) while the redox potential is more sensitive
to distal ligand modifications.
The capacity of trained models to extrapolate to new, dissimilar chemistries is thor-
oughly investigated by assessing prediction accuracy for diverse experimental com-
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plexes from the Cambridge Structural Database (CSD). Performance is found to be
highly variable, with many well-predicted complexes and a few large errors. This
necessitates measures of model confidence, but surrogate model predictive ability is
weakly correlated with organic chemical similarity metrics (i.e. Tanimoto distances).
We investigate different ways to quantify the extent of extrapolation in chemical
space, and determine that model errors can be well-predicted based on extrapolation
distance to training data in simple, curated feature spaces.
However, errors are less correlated with extrapolation distances in high-dimensional
feature spaces, and therefore chemical extrapolation in the latent space of learned
ANN models is proposed as an alternative. This is shown to provide a better qualita-
tive description of out-of-distribution model confidence compared with feature space
distances, ensemble averaging and dropout-based standard deviations. To provide
an estimate of uncertainty in relevant units, a simple probabilistic error model based
on latent distance extrapolation is formulated and calibrated with a small amount
of out-of-sample data, giving good quantitative error bounds on both inorganic and
organic datasets, as well as good results when used for active learning.
This provides a metric for extrapolative uncertainty, but uncertainty with respect
to DFT functional choice is another serious issue for simulation of open-shell tran-
sition metal complexes. This is addressed by training surrogate models on data
sampled from DFT calculations with different levels of exact exchange. This pro-
vides predictions of the unique, system-specific functional sensitivity of transition
metal complexes, capturing variations in simulation reliability across chemical space.
The developed approach is also adapted to address the difficulty in initializing new
simulations of unknown metal-ligand combinations in a spin and oxidation state de-
pendent manner by predicting DFT equilibrium metal-ligand bond lengths. This
capacity is incorporated into the open source molSimplify toolkit, which combines
these distance predictions with force field calculations on organic bonds to construct
initial geometries. This enables future simulations to benefit from high quality initial
geometries that were previously only available for organic systems.
The introduced framework is demonstrated in two application areas. Firstly, novel
spin crossover (SCO) materials are designed from a space of thousands of candidates,
exploiting the surrogate ANN and a newly-introduced genetic algorithm (GA) that
balances both model uncertainty (as captured by extrapolation distance from training
data) and property optimization. The modified GA generates hundreds of leads in a
fraction of the time required for first-principles screening, 60% of which are validated
to be SCOs at a DFT level. Finally, multiobjective probabilistic optimization and
active learning are used to identity redox couples that balance solubility and redox
potential from a design space of approximately three million candidates. A combina-
torial strategy is used to construct a diverse and densely-sampled design space and
a combination of multitask ANNs and 2D expected improved is used to identify and
iteratively refine a Pareto frontier of candidate complexes using a few hundred DFT
simulations that are substantially enriched relative to random sampling, providing at
least a 500-fold increase in efficiency. The utility of this surrogate-assisted approach
is evident from the orders-of-magnitude accelerations obtained over screening purely
with DFT, and such strategies open the door for in silico design of some of the most
challenging molecular systems at a far greater scale than ever before.
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